

Markscheme

November 2018

Physics

Higher level

Paper 2

18 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	Questi	on	Answers	Notes	Total
1.	а		change in momentum each second = $6.6 \times 10^{-6} \times 5.2 \times 10^{4} \text{ w} = 3.4 \times 10^{-1} \text{ kg m s}^{-1} \text{ w}$ acceleration = $\frac{3.4 \times 10^{-1}}{740} = 3.4 \times 10^{-4} \text{ m s}^{-2} \text{ w}$		2
1.	b	i	ALTERNATIVE 1: (considering the acceleration of the spacecraft) time for acceleration = $\frac{30}{6.6 \times 10^{-6}}$ = «4.6×10 ⁶ » «s» ✓ max speed = «answer to (a) × 4.6×10 ⁶ =» 2.1×10 ³ «m s ⁻¹ » ✓ ALTERNATIVE 2: (considering the conservation of momentum) (momentum of 30 kg of fuel ions = change of momentum of spacecraft) $30 \times 5.2 \times 10^4$ = 710× max speed ✓ max speed = 2.2×10 ³ «m s ⁻¹ » ✓		2
1.	b	ii	as fuel is consumed total mass changes/decreases so acceleration changes/increases OR external forces (such as gravitational) can act on the spacecraft so acceleration isn't constant ✓		1

(Question 1 continued)

Question		on	Answers	Notes	Total	
1.	b	iii	problem may be too complicated for exact treatment ✓			
			to make equations/calculations simpler ✓		1 max	
			when precision of the calculations is not important ✓			
			some quantities in the problem may not be known exactly ✓			
1.	С	i	ions have same (sign of) charge √		0	
			ions repel each other ✓		2	
1.	С	ii	the forces between the ions do not affect the force on the spacecraft. ✓		2	
			there is no effect on the acceleration of the spacecraft. <		2	

C	uesti	on	Answers	Notes	Total
2.	а		ALTERNATIVE 1: $r = \sqrt{\frac{\rho l}{\pi R}} OR \sqrt{\frac{7.2 \times 10^{-7} \times 12.5}{\pi \times 0.1}} \checkmark$ $r = 5.352 \times 10^{-3} \checkmark$ $5.4 \times 10^{-3} \text{ «m»} \checkmark$ $ALTERNATIVE 2:$ $A = \frac{7.2 \times 10^{-7} \times 12.5}{0.1} \checkmark$ $r = 5.352 \times 10^{-3} \checkmark$ $5.4 \times 10^{-3} \text{ «m»} \checkmark$	For MP2 accept any SF For MP3 accept Only 2 SF For MP3 accept ANY answer given to 2 SF For MP2 accept any SF For MP3 accept only 2 SF For MP3 accept Only 2 SF For MP3 accept ANY answer given to 2 SF	3
2.	b		current in lamp = $\frac{5}{24}$ «= 0.21» «A» OR $n = 24 \times \frac{8}{5}$ so «38.4 and therefore» 38 lamps \checkmark	Do not award ECF from MP1	2

(Question 2 continued)

C	Question		Answers	Notes	Total
2.	С	;		Accept converse arguments for adding lamps in series:	
			when adding more lamps in parallel the brightness stays the same ✓	when adding more lamps in series the brightness decreases	
			when adding more lamps in parallel the pd across each remains the same/at the operating value/24 V ✓	when adding more lamps in series the pd decreases	
			when adding more lamps in parallel the current through each remains the same ✓	when adding more lamps in series the current decreases	
			lamps can be controlled independently ✓	lamps can't be controlled independently	1 max
			the pd across each bulb is larger in parallel ✓	the pd across each bulb is smaller in series	
			the current in each bulb is greater in parallel ✓	the current in each bulb is smaller in series	
			lamps will be brighter in parallel than in series ✓		
			In parallel the pd across the lamps will be the operating value/24 V ✓	in series the pd across the lamps will less than the operating value/24 V	
				Do not accept statements that only compare the overall resistance of the combination of bulbs.	

(Question 2 continued)

C	uesti	on	Answers	Notes	Total
2.	d	i	«as flux linkage change occurs in core, induced emfs appear so» <u>current</u> is <u>induced</u> ✓ induced currents give rise to resistive forces ✓ eddy currents cause thermal energy losses «in conducting core» ✓		2 max
			power dissipated by eddy currents is drawn from the primary coil/reduces power delivered to the secondary ✓		
2.	d	ii	power = 190 <i>OR</i> 192 «W» \checkmark required power = 190 $\times \frac{100}{95}$ «= 200 <i>or</i> 202 W » \checkmark so $\frac{200}{240}$ = 0.83 <i>OR</i> 0.84 «A rms» \checkmark peak current = «0.83 $\times \sqrt{2}$ <i>OR</i> 0.84 $\times \sqrt{2}$ » = 1.2/1.3 «A» \checkmark		4

Ques	stion	Answers	Notes	Total
3. a		force × time OR change in momentum ✓		1
3. b	i	$E_{k} = mgh = 0.058 \times 9.81 \times 1.1 = 0.63 J$	Allow use of $g = 10 \text{ m s}^{-2}$ (which gives 0.64 «J») Substitution and at least 2 SF must be shown	1
3. b	ii	initial momentum = $mv = \sqrt{2 \times 0.058 \times 0.63}$ «= 0.27 kg m s ⁻¹ » OR $mv = 0.058 \times \sqrt{2 \times 9.81 \times 1.1}$ «= 0.27 kg m s ⁻¹ » \checkmark force = « $\frac{\text{change in momentum}}{\text{time}}$ = » $\frac{0.27}{0.055}$ \checkmark 4.9 «N» \checkmark $F - mg = 4.9$ so $F = 5.5$ «N» \checkmark ALTERNATIVE 2: « $E_k = \frac{1}{2} \text{mv}^2 = 0.63 \text{ J}$ » v = 4.7 m s ⁻¹ \checkmark acceleration = « $\frac{\Delta v}{\Delta t}$ = » $\frac{4.7}{55 \times 10^{-3}}$ = «85 m s ⁻² » \checkmark 4.9 «N» \checkmark $F - mg = 4.9$ so $F = 5.5$ «N» \checkmark	Accept negative acceleration and force.	4

(Question 3 continued)

Question		on	Answers	Notes	Total
3.	b	iii	ALTERNATIVE 1:	Allow reverse argument for grass.	
			concrete reduces the stopping time/distance ✓		
			impulse/change in momentum same so force greater		
			OR		
			work done same so force greater ✓		2
			ALTERNATIVE 2:		
			concrete reduces the stopping time ✓		
			deceleration is greater so force is greater ✓		

C	uesti	ion	Answers	Notes	Total
4.	а	i	horizontal line shown in centre of pipe ✓		1
4.	а	ii	«air molecule» moves to the right and then back to the left ✓ returns to X/original position ✓		2
4.	b		wavelength = 2×1.4 «= 2.8 m» \checkmark $c = « f \lambda = » 120 \times 2.8 «= 340 m s-1» \checkmark K = « \rho c^2 = 1.3 \times 340^2 = » 1.5 \times 10^5 \checkmark kg m^{-1} s^{-2} \checkmark$		4
4.	С	i	construction showing formation of image ✓	Another straight line/ray from image through the wall with line/ray from intersection at wall back to transmitter. Reflected ray must intersect boat.	1
4.	С	ii	 interference pattern is observed OR interference/superposition mentioned ✓ maximum when two waves occur in phase/path difference is nλ OR minimum when two waves occur 180° out of phase/path difference is (n + ½) λ ✓ 		2

Q	uestic	on	Answers	Notes	Total
5.	а	i	identifies $\lambda = 435 \text{nm} \checkmark$ $E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{4.35 \times 10^{-7}} \checkmark$ $4.6 \times 10^{-19} \text{«J} \text{»} \text{\checkmark}$		3
5.	а	ii	-0.605 <i>OR</i> –0.870 <i>OR</i> –1.36 to –5.44 <i>AND</i> arrow pointing downwards ✓	Arrow MUST match calculation in (a)(i) Allow ECF from (a)(i)	1
5.	а	iii	Difference in energy levels is equal to the energy of the photon ✓ Downward arrow as energy is lost by hydrogen/energy is given out in the photon/the electron falls from a higher energy level to a lower one ✓		2

(Question 5 continued)

C	Question		Answers	Notes	Total
5.	b	i	$\frac{\lambda}{2\Delta\lambda} = \frac{656.20}{0.181 \times 2} = 1813 \text{ «lines» } \checkmark$ so spacing is $\frac{3.5 \times 10^{-3}}{1813} \text{ «} = 1.9 \times 10^{-6} \text{ m} \text{»} \checkmark$	Allow use of either wavelength or the mean value Must see at least 2 SF for a bald correct answer	2
5.	b	ii	$2 \times 4.1 \times 10^{-7} = 1.9 \times 10^{-6} \sin \theta_{v}$ seen OR $6.6 \times 10^{-7} = 1.9 \times 10^{-6} \sin \theta_{r}$ seen \checkmark $\theta_{v} = 24 - 26 \text{``} \text{``} \text{``}$ OR $\theta_{r} = 19 - 20 \text{``} \text{``} \text{$\checkmark}$ $\Delta \theta = 5 - 6 \text{``} \text{``} \text{$\checkmark}$	For MP3 answer must follow from answers in MP2 For MP3 do not allow ECF from incorrect angles	3
5.	b	iii	centre of pattern is white ✓ coloured fringes are formed ✓ blue/violet edge of order is closer to centre of pattern OR red edge of order is furthest from centre of pattern ✓ the greater the order the wider the pattern ✓ there are gaps between «first and second order» spectra ✓		3 max

Question		ion	Answers	Notes	
6.	а	i	it is constant ✓		1
	а	ii	$R = 1.20 \times 10^{-15} \times 31^{\frac{1}{3}} = 3.8 \times 10^{-15} \text{ m/s} \checkmark$	Must see working and answer to at least 2SF	1
6.	b	i	separation for interaction = 5.3 or 5.5 « fm» √		1
6.	b	ii	energy required = $\frac{15e^2}{4\pi\varepsilon_0 \times 5.3 \times 10^{-15}}$ = $6.5 / 6.6 \times 10^{-13}$ OR = 6.3×10^{-13} «J» √	Allow ecf from (b)(i)	2
6.	С		«electron» <u>antineutrino</u> also emitted ✓ energy split between electron and «anti»neutrino ✓		2
6.	d	i	probability of decay of a nucleus ✓ OR the fraction of the number of nuclei that decay in one/the next second OR per unit time ✓		2
6.	d	ii	1 week = 6.05×10^5 «s» \checkmark 17 = $24e^{-\lambda \times 6.1 \times 10^5}$ \checkmark 5.7×10 ⁻⁷ «s ⁻¹ » \checkmark	Award [2 max] if answer is not in seconds If answer not in seconds and no unit quoted award [1 max] for correct substitution into equation (MP2)	3

C	Question		Answers	Notes	Total
7.	а		charge stored on capacitor = $12 \times 10^{-3} \times 7.5 = 0.09$ «C» \checkmark		1
7.	b		energy stored in capacitor $\frac{1}{2}CV^2 or \frac{1}{2}QV = \frac{1}{2} \times 12 \times 10^{-3} \times 7.5^2 = 0.338 \text{ J} \text{ w}$ $\text{height} = \frac{1}{3} \times \frac{0.338}{9.81 \times 4.5 \times 10^{-2}} = \frac{0.25}{0.26} \times \frac{1}{2} \times \frac{1}{2} \times \frac{10^{-3} \times 7.5^2}{2} = 0.338 \text{ J} \text{ w}$	Allow use of $g = 10 \text{ m s}^{-2}$ which gives 0.25 «m»	2
7.	С		C <u>halved</u> ✓ so energy stored is halved/reduced so rises «less than» half height ✓ discharge time/raise time less as RC halved/reduced ✓	Allow 6 mF	3

Question		on	Answers	Notes	Total
8.	а	i	force per unit mass ✓ acting on a small/test/point mass «placed at the point in the field» ✓		2
8.	а	ii	Mars is spherical/a sphere «and of uniform density so behaves as a point mass» ✓ satellite has a much smaller mass/diameter/size than Mars «so approximates to a point mass» ✓		2
8.	b	i	$\frac{mv^2}{r} = \frac{GMm}{r^2} \text{ hence} v = \sqrt{\frac{GM}{R}} \text{ . Also } v = \frac{2\pi R}{T}$ OR $m\omega^2 r = \frac{GMm}{r^2} \text{ hence } \omega^2 = \frac{GM}{R^3} \checkmark$ uses either of the above to get $T^2 = \frac{4\pi^2}{GM}R^3$ OR uses $k = \frac{4\pi^2}{GM} \checkmark$ $k = 9.2 \times 10^{-13} / 9.3 \times 10^{-13} \checkmark$	Unit not required	3

(Question 8 continued)

Question		on	Answers	Notes	Total
8.	b	ii	$R^{3} = \frac{T^{2}}{k} = \frac{\left(8.9 \times 10^{4}\right)^{2}}{9.25 \times 10^{-13}} R = 2.04 \times 10^{7} \text{ m/s} \text{ J}$ $V = \text{w} \omega r = \frac{2\pi \times 2.04 \times 10^{7}}{89000} = \text{w} \cdot 1.4 \times 10^{3} \text{ m/s}^{-1} \text{ w}$ OR $V = \text{w} \sqrt{\frac{GM}{R}} = \sqrt{\frac{6.67 \times 10^{-11} \times 6.4 \times 10^{23}}{2.04 \times 10^{7}}} = \text{w} \cdot 1.4 \times 10^{3} \text{ m/s}^{-1} \text{ w/s}^{-1}$		2
8.	С	i	use of $I \propto \frac{1}{r^2}$ «1.36×10 ³ × $\frac{1}{1.5^2}$ » \checkmark 604 «W m ⁻² » \checkmark		2
8.	С	ii	use of $\frac{600}{4}$ for mean intensity \checkmark temperature/K = $\sqrt[4]{\frac{600}{4 \times 5.67 \times 10^{-8}}}$ = \times 230 \checkmark		2
8.	С	iii	reference to greenhouse gas/effect ✓ recognize the link between molecular density/concentration and pressure ✓ low pressure means too few molecules (to produce a significant heating effect) ✓ OR low pressure means too little radiation re-radiated back to Mars ✓	The greenhouse effect can be described, it doesn't have to be named	3

Q	Question		Answers	Notes	Total
9.	а		Internal energy is the sum of all the PEs and KEs of the molecules (of the oxygen) ✓	Molecules/particles/atoms must be included once, if not, award [1 max]	
			PE of molecules in gaseous state is zero ✓		
			(At boiling point) average KE of molecules in gas and liquid is the same ✓		2 max
			gases have a higher internal energy ✓		
9.	b	i	ALTERNATIVE 1:		
			flow rate of oxygen = 8 «g s ⁻¹ » ✓		
					2
			ALTERNATIVE 2:		2
			$Q = (0.25 \times 32 \times 10^{-3} \times 2.1 \times 10^{5}) = 1680 \text{ (J)}$		
			power = « 1680 W = » 1.7 « kW » √		
9.	b	ii	T=260 «K» ✓		
			$V = \frac{nRT}{p} = 3.9 \times 10^{-3} \text{ cm}^3 \text{ s}$		2

(Question 9 continued)

Question		on	Answers	Notes	Total
9.	С		ideal gas has point objects √	Allow the opposite statements if they are clearly made about oxygen eg oxygen/this can be liquified	
			no intermolecular forces √		
			non liquefaction √		1 max
			ideal gas assumes monatomic particles ✓		
			the collisions between particles are elastic ✓		