Markscheme

November 2018

Physics

Higher level

Paper 2

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question			Answers	Notes	Total
1.	a		change in momentum each second $=6.6 \times 10^{-6} \times 5.2 \times 10^{4} «=3.4 \times 10^{-1} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ » \checkmark acceleration $=« \frac{3.4 \times 10^{-1}}{740}=» 4.6 \times 10^{-4} « \mathrm{~m} \mathrm{~s}^{-2} » \checkmark$		2
1.	b	i	ALTERNATIVE 1: (considering the acceleration of the spacecraft) time for acceleration $=\frac{30}{6.6 \times 10^{-6}}=« 4.6 \times 10^{6} » « s$ » \downarrow max speed $=$ «answer to $(\mathrm{a}) \times 4.6 \times 10^{6}=» 2.1 \times 10^{3} « \mathrm{~m} \mathrm{~s}^{-1}$ » \downarrow ALTERNATIVE 2: (considering the conservation of momentum) (momentum of 30 kg of fuel ions = change of momentum of spacecraft) $\begin{aligned} & 30 \times 5.2 \times 10^{4}=710 \times \text { max speed } \checkmark \\ & \max \text { speed }=2.2 \times 10^{3}<\mathrm{m} \mathrm{~s}^{-1} » \end{aligned}$		2
1.	b	ii	as fuel is consumed total mass changes/decreases so acceleration changes/increases OR external forces (such as gravitational) can act on the spacecraft so acceleration isn't constant \checkmark		1

(continued...)
(Question 1 continued)

| Question | | Answers | Notes | Total |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 1. | b | iii | problem may be too complicated for exact treatment \checkmark
 to make equations/calculations simpler \checkmark
 when precision of the calculations is not important \checkmark
 some quantities in the problem may not be known exactly \checkmark | 1 max |
| 1. | c | i | ions have same (sign of) charge \checkmark
 ions repel each other \checkmark | $\mathbf{2}$ |
| 1. | c | ii | the forces between the ions do not affect the force on the spacecraft. \checkmark
 there is no effect on the acceleration of the spacecraft. \checkmark | $\mathbf{2}$ |

Question		Answers	Notes	Total
2.	a	ALTERNATIVE 1: $\begin{aligned} & r=\sqrt{\frac{\rho l}{\pi R}} \text { OR } \sqrt{\frac{7.2 \times 10^{-7} \times 12.5}{\pi \times 0.1}} \\ & r=5.352 \times 10^{-3} \\ & 5.4 \times 10^{-3} \text { «m» } \end{aligned}$ ALTERNATIVE 2: $\begin{aligned} & A=\frac{7.2 \times 10^{-7} \times 12.5}{0.1} \\ & r=5.352 \times 10^{-3} \checkmark \\ & 5.4 \times 10^{-3} \text { «m» } \end{aligned}$	For MP2 accept any SF For MP3 accept only 2 SF For MP3 accept ANY answer given to 2 SF For MP2 accept any SF For MP3 accept only 2 SF For MP3 accept ANY answer given to 2 SF	3
2.	b	$\text { current in lamp }=\frac{5}{24} «=0.21 » \text { «A» }$ OR $n=24 \times \frac{8}{5}$ so «38.4 and therefore» 38 lamps \checkmark	Do not award ECF from MP1	2

(continued...)
(Question 2 continued)

Question			Answers	Notes	Total
2.	c		when adding more lamps in parallel the brightness stays the same \checkmark when adding more lamps in parallel the pd across each remains the same/at the operating value/ $24 \mathrm{~V} \checkmark$ when adding more lamps in parallel the current through each remains the same \checkmark lamps can be controlled independently \checkmark the pd across each bulb is larger in parallel \checkmark the current in each bulb is greater in parallel \checkmark lamps will be brighter in parallel than in series \checkmark In parallel the pd across the lamps will be the operating value/ 24 V V	Accept converse arguments for adding lamps in series: when adding more lamps in series the brightness decreases when adding more lamps in series the pd decreases when adding more lamps in series the current decreases lamps can't be controlled independently the pd across each bulb is smaller in series the current in each bulb is smaller in series in series the pd across the lamps will less than the operating value/24 V Do not accept statements that only compare the overall resistance of the combination of bulbs.	1 max

(continued...)
(Question 2 continued)

Question			Answers	Notes	Total
2.	d	i	«as flux linkage change occurs in core, induced emfs appear so» current is induced \checkmark induced currents give rise to resistive forces \checkmark eddy currents cause thermal energy losses «in conducting core» $\boldsymbol{\checkmark}$ power dissipated by eddy currents is drawn from the primary coil/reduces power delivered to the secondary $\boldsymbol{\checkmark}$		2 max
2.	d	ii	$\begin{aligned} & \text { power }=190 \text { OR } 192 \text { «W» } \\ & \text { required power }=190 \times \frac{100}{95} «=200 \text { or } 202 \mathrm{~W} » \checkmark \\ & \text { so } \frac{200}{240}=0.83 \text { OR } 0.84 « \mathrm{~A} \text { rms» } \checkmark \\ & \text { peak current }=« 0.83 \times \sqrt{2} \text { OR } 0.84 \times \sqrt{2} »=1.2 / 1.3 \\ & \text { «A» } \checkmark \end{aligned}$		4

Question			Answers	Notes	Total
3.	a		force \times time OR change in momentum $\sqrt{ }$		1
3.	b	i	$E_{\mathrm{k}}=\mathrm{mgh}=0.058 \times 9.81 \times 1.1=0.63 \mathrm{~J} \checkmark$	Allow use of $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ (which gives 0.64 «J») Substitution and at least 2 SF must be shown	1
3.	b	ii	ALTERNATIVE 1: $\begin{aligned} & \text { initial momentum }=m v=\sqrt{2 \times 0.058 \times 0.63} «=0.27 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} » \\ & \boldsymbol{O R} \\ & m v=0.058 \times \sqrt{2 \times 9.81 \times 1.1} «=0.27 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} » \checkmark \\ & \text { force }=« \frac{\text { change in momentum }}{\text { time }}=» \frac{0.27}{0.055} \checkmark \\ & 4.9 \text { «N» } \downarrow \\ & F-m g=4.9 \text { so } F=5.5 \text { «N» } \end{aligned}$ ALTERNATIVE 2: $\begin{aligned} & « E_{\mathrm{k}}=\frac{1}{2} \mathrm{mv}^{2}=0.63 \mathrm{~J} » v=4.7 \mathrm{~m} \mathrm{~s}^{-1} \checkmark \\ & \text { acceleration }=« \frac{\Delta v}{\Delta \mathrm{t}}=» \frac{4.7}{55 \times 10^{-3}}=« 85 \mathrm{~m} \mathrm{~s}^{-2} » \checkmark \\ & 4.9 « \mathrm{~N} » \checkmark \\ & F-m g=4.9 \text { so } F=5.5 « \mathrm{~N} » \checkmark \end{aligned}$	Accept negative acceleration and force.	4

(continued...)
(Question 3 continued)

| Question | | Answers | ALTERNATIVE 1:
 3.
 concrete reduces the stopping time/distance \checkmark
 impulse/change in momentum same so force greater
 OR
 work done same so force greater \checkmark
 ALTERNATIVE 2:
 concrete reduces the stopping time \checkmark
 deceleration is greater so force is greater \checkmark | Allow reverse argument for grass. |
| :--- | :--- | :--- | :--- | :--- | :--- |

Question			Answers	Notes	Total
4.	a	i	horizontal line shown in centre of pipe \checkmark		1
4.	a	ii	«air molecule» moves to the right and then back to the left \checkmark returns to X/original position \checkmark		2
4.	b		$\begin{aligned} & \text { wavelength }=2 \times 1.4 «=2.8 \mathrm{~m} » \\ & c=« f \lambda=» 120 \times 2.8 «=340 \mathrm{~m} \mathrm{~s}^{-1} » \\ & K=« \rho c^{2}=1.3 \times 340^{2}=» 1.5 \times 10^{5} \checkmark \\ & \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2} \checkmark \end{aligned}$		4
4.	c	i	construction showing formation of image \checkmark	Another straight line/ray from image through the wall with line/ray from intersection at wall back to transmitter. Reflected ray must intersect boat.	1
4.	C	ii	interference pattern is observed OR interference/superposition mentioned \checkmark maximum when two waves occur in phase/path difference is $n \lambda$ OR minimum when two waves occur 180° out of phase/path difference is $(\mathrm{n}+1 / 2) \lambda \checkmark$		2

Question			Answers	Notes	Total
5.	a	i	identifies $\lambda=435 \mathrm{~nm} \checkmark$ $\begin{aligned} & E=« \frac{h c}{\lambda}=» \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{4.35 \times 10^{-7}} \\ & 4.6 \times 10^{-19} « \mathrm{~J} » \checkmark \end{aligned}$		3
5.	a	ii	-0.605 OR -0.870 OR -1.36 to -5.44 AND arrow pointing downwards \checkmark	Arrow MUST match calculation in (a)(i) Allow ECF from (a)(i)	1
5.	a	iii	Difference in energy levels is equal to the energy of the photon \checkmark Downward arrow as energy is lost by hydrogen/energy is given out in the photon/the electron falls from a higher energy level to a lower one \checkmark		2

(continued...)
(Question 5 continued)

Question			Answers	Notes	Total
5.	b	i	$\frac{\lambda}{2 \Delta \lambda}=\frac{656.20}{0.181 \times 2}=1813 \text { «lines » } \downarrow$ so spacing is $\frac{3.5 \times 10^{-3}}{1813}$ « $=1.9 \times 10^{-6} \mathrm{~m}$ » \checkmark	Allow use of either wavelength or the mean value Must see at least 2 SF for a bald correct answer	2
5.	b	ii	$2 \times 4.1 \times 10^{-7}=1.9 \times 10^{-6} \sin \theta_{v}$ seen OR $6.6 \times 10^{-7}=1.9 \times 10^{-6} \sin \theta_{\mathrm{r}} \text { seen } \checkmark$ $\theta_{v}=24-26 «^{\circ} »$ OR $\begin{aligned} & \theta_{r}=19-20 «^{\circ} » \checkmark \\ & \Delta \theta=5-6 «^{\circ} » \checkmark \end{aligned}$	For MP3 answer must follow from answers in MP2 For MP3 do not allow ECF from incorrect angles	3
5.	b	iii	centre of pattern is white coloured fringes are formed \checkmark blue/violet edge of order is closer to centre of pattern OR red edge of order is furthest from centre of pattern \checkmark the greater the order the wider the pattern \checkmark there are gaps between «first and second order» spectra \checkmark		3 max

Question			Answers	Notes	Total
6.	a	i	it is constant \checkmark		1
	a	ii	$R=1.20 \times 10^{-15} \times 31^{\frac{1}{3}}=3.8 \times 10^{-15}$ «m»	Must see working and answer to at least 2SF	1
6.	b	i	separation for interaction $=5.3$ or 5.5 «fm» \downarrow		1
6.	b	ii	$\begin{aligned} & \text { energy required }=\frac{15 e^{2}}{4 \pi \varepsilon_{0} \times 5.3 \times 10^{-15}} \\ & =6.5 / 6.6 \times 10^{-13} O R=6.3 \times 10^{-13} \text { «J» } \end{aligned}$	Allow ecf from (b)(i)	2
6.	c		«electron» antineutrino also emitted \checkmark energy split between electron and «anti»neutrino \checkmark		2
6.	d	i	probability of decay of a nucleus \checkmark OR the fraction of the number of nuclei that decay in one/the next second OR per unit time \checkmark		2
6.	d	ii	$\begin{aligned} & 1 \text { week }=6.05 \times 10^{5} \text { «s» } \\ & 17=24 \mathrm{e}^{-\lambda \times 6.1 \times 10^{5}} \\ & 5.7 \times 10^{-7} \text { «s-1» } \end{aligned}$	Award [2 max] if answer is not in seconds If answer not in seconds and no unit quoted award [1 max] for correct substitution into equation (MP2)	3

Question		Answers	Notes	Total
7.	a	charge stored on capacitor $=12 \times 10^{-3} \times 7.5=0.09$ «C» \downarrow		1
7.	b	energy stored in capacitor « $\frac{1}{2} C^{2}$ or $\frac{1}{2} Q V=» \frac{1}{2} \times 12 \times 10^{-3} \times 7.5^{2}$ « $=0.338 \mathrm{~J}$ » \checkmark $\text { height }=« \frac{1}{3} \times \frac{0.338}{9.81 \times 4.5 \times 10^{-2}}=» 0.25 / 0.26 « \mathrm{~m} »$	Allow use of $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ which gives 0.25 «m»	2
7.	c	C halved \checkmark so energy stored is halved/reduced so rises «less than» half height \checkmark discharge time/raise time less as RC halved/reduced \checkmark	Allow 6 mF	3

Question			Answers	Notes	Total
8.	a	i	force per unit mass \checkmark acting on a small/test/point mass «placed at the point in the field» \checkmark		2
8.	a	ii	Mars is spherical/a sphere «and of uniform density so behaves as a point mass» \checkmark satellite has a much smaller mass/diameter/size than Mars «so approximates to a point mass» \downarrow		2
8.	b	i	« $\frac{m v^{2}}{r}=\frac{G M m}{r^{2}}$ hence» $v=\sqrt{\frac{G M}{R}}$. Also $v=\frac{2 \pi R}{T}$ OR $m \omega^{2} r=\frac{G M m}{r^{2}}$ hence $\omega^{2}=\frac{G M}{R^{3}} \checkmark$ uses either of the above to get $T^{2}=\frac{4 \pi^{2}}{G M} R^{3}$ OR uses $k=\frac{4 \pi^{2}}{G M} \checkmark$ $k=9.2 \times 10^{-13} / 9.3 \times 10^{-13} \quad$	Unit not required	3

(continued...)
(Question 8 continued)

| Question | | Answers | Total | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 8. | b | ii | | |

Question			Answers	Notes	Total
9.	a		Internal energy is the sum of all the PEs and KEs of the molecules (of the oxygen) \checkmark PE of molecules in gaseous state is zero \checkmark (At boiling point) average KE of molecules in gas and liquid is the same \checkmark gases have a higher internal energy \checkmark	Molecules/particles/atoms must be included once, if not, award [1 max]	2 max
9.	b	i	ALTERNATIVE 1: flow rate of oxygen $=8$ « $\mathrm{g} \mathrm{s}^{-1}$ » \downarrow $« 2.1 \times 10^{5} \times 8 \times 10^{-3} »=1.7 « \mathrm{~kW} » \downarrow$ ALTERNATIVE 2: $\begin{aligned} & Q=« 0.25 \times 32 \times 10^{-3} \times 2.1 \times 10^{5}=» 1680 \text { «J» } \\ & \text { power }=« 1680 \mathrm{~W}=» 1.7 \text { «kW » } \end{aligned}$		2
9.	b	ii	$\begin{aligned} & T=260 « \mathrm{~K} » \checkmark \\ & V=« \frac{n R T}{p}=» 4.9 \times 10^{-3} « \mathrm{~m}^{3} » \checkmark \end{aligned}$		2

(continued...)
(Question 9 continued)

| Question | | Answers | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{9 .}$ | \mathbf{c} | ideal gas has point objects \checkmark
 no intermolecular forces \checkmark
 non liquefaction \checkmark
 ideal gas assumes monatomic particles \checkmark
 the collisions between particles are elastic \checkmark | Allow the opposite statements if they are clearly made about
 oxygen eg oxygen/this can be liquified |
| $\mathbf{1}$ | | | |

